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Abstract
We construct general Dirac theories in both C⊗C�(3, 1) and C⊗C�(1, 3) using
a first order left acting Dirac operator. Any two such theories are equivalent
provided they have the same dimension. We also show that every 16- or
8-dimensional real Dirac theory in C�(1, 3) is equivalent to some (complex)
Dirac theory in C ⊗ C�(1, 3). As an immediate consequence of this we have
that the Hestenes and original Dirac formulations are equivalent.

PACS numbers: 03.50.Dc, 03.30.+p

1. Introduction

Dirac’s original equation was constructed to fulfil three requirements: Lorentz covariance, a
positive-definite conserved current and Einstein’s mass–energy relation (that is, the Klein–
Gordon equation). We re-examine Dirac’s original argument to construct Dirac formulations
for a left acting first order Dirac operator over a suitable Lorentz invariant subspace
of C ⊗ C�(η). Here C ⊗ C�(η) represents the Clifford algebra C ⊗ C�(2 + η, 2 − η)

where η = ±1. These include Dirac’s original matrix formulation, or more precisely its
reformulation in Lounesto [1] as the equation iγµ∂µψ = mψ over the four-dimensional left
ideal C ⊗ C�(1, 3) 1

2 (1 + γ0)
1
2 (1 + iγ12). We have little interest in the 4 × 4 matrix algebra

generated by Dirac’s matrices, and work instead with the Clifford algebra C ⊗ C�(η) generated
by eµ. One may obtain Dirac’s matrix algebra by identifying eµ and γµ. We refer to Dirac’s
original formulation in C ⊗ C�(η) as the Lounesto formulation.

The Dirac formulations given by Joyce [2] utilize the Dirac equation i∇ψ = mψe0

over the subalgebra C ⊗ C�+(η), where ∇ = eµ∂µ. This is equivalent to two copies of
the Lounesto formulation, because of a right acting SU(2) gauge freedom. We may fix the
gauge by restricting to C ⊗ C�+(1, 3) 1

2 (1 + ie12) which results in equivalence with Lounesto’s
formulation. In general we demonstrate that two Dirac formulations whose fibre spaces are
of the same dimension 4, 8, 12 or 16 are equivalent. Furthermore, we show that this carries
over to real Dirac formulations of (real) dimension 8 and 16 in the Clifford algebra C�(1, 3).
This includes Hestenes’ formulation where the Dirac equation is ∇ψ = mψe012 over the
subalgebra C�+(1, 3).
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The geometry of spacetime is represented by either of the non-isomorphic Clifford
algebras C�(3, 1) or C�(1, 3). It is argued by Hestenes [3] and Gull et al [4], to name a few, that
there are many copies of C in both these algebras and hence there is no need to complexify. In
particular we have C�+(3, 1) ∼= C�+(1, 3) ∼= C�(3, 0) ∼= C⊗H. Nevertheless, traditional Dirac
theory is formulated in the Dirac algebra. There are three different ways to view the Dirac
algebra C ⊗ C�(3, 1) ∼= C ⊗ C�(1, 3). Firstly, and traditionally, as an abstract space acting on
the space of spinors. Secondly, as the fibre space of a complex geometric field, where each
multivector is assigned a phase factor. Thirdly, as in Kaluza–Klein theory where we introduce
a fourth spatial direction, since we have C�(4, 1) ∼= C ⊗ C�(3, 1) ∼= C ⊗ C�(1, 3) ∼= C�(1, 4).

2. Formulation of Dirac theories

Dirac theories arise from first order differential equations covariant under the Poincaré group.
The Dirac field is a smooth map ψ : M4 → C ⊗ C�(η) where M4 is Minkowski spacetime.
We note that when we write ψ ∈ C ⊗ C�(η) we mean ψ(x) ∈ C ⊗ C�(η) for all x ∈ M4.
Indulging in such notational abuse requires that we remain aware of the distinction between a
Dirac field, which is a map ψ : M4 → C ⊗ C�(η), and the value ψ(x) the field attains at x.

An infinitesimal analysis of translations of M4 for any Dirac field ψ extracts the energy
operator as E = −i∂0 and the kth component of the momentum operator as Pk = i∂k. We
define the Dirac operator to be ∇ = eµ∂µ which in terms of the energy–momentum operators
is ∇ = ie0E − iekP

k . Einstein’s mass–energy relationship (or the first Casimir invariant)
implies the Klein–Gordon equation

∇2ψ2 = ηm2ψ (1)

where ∇2 = η(E2−P 2). Dirac theories seek to factorize the Klein–Gordon operator η∇2−m2

to obtain a first order differential equation with a conserved energy–momentum current. We
seek an equation of the form

Dψ = mψk (2)

where D = aµ∂µ. The Clifford elements aµ, k ∈ C ⊗ C�(η) are required by translational
covariance to be constant over the base space M4. Applying D to the equation gives
D2ψ = m2ψk2. Einstein’s mass–energy relation requires D2 = c∇2 and k2 = cη for
some complex number c �= 0. The first condition requires the relationship

{aµ, aν} = c{eµ, eν}. (3)

The collection {aµ} forms a generating set for C ⊗ C�(η). We assume that each aµ is odd.
Thus there is an invertible element R such that aµ = √

c R−1eµR or aµ = η
√

c e0123R−1eµR.
This gives respectively D = √

c R−1∇R and D = η
√

c e0123R−1∇R. In the former case we
take R−1eµR, and in the latter case |c|−1/2e0123R−1eµR, as the generators eµ of the Clifford
algebra C⊗C�(η). Under this transformation we can transform D into ∇ (and K into k) giving
the general form of the Dirac equation as

∇ψ = mψk (4)

with k2 = η. We also require the Dirac equation to have a conserved probability current. The
unique inner product with positive definite norm is given by 〈ψ̄ψ〉0 where the Dirac conjugate
of an n-vector v is given by v̄ = (−η)ne0v†e0. From this we construct the Dirac current

Jµ = 〈
ψ̄e−1

0 eµψ
〉
0 . (5)

Taking the divergence, inserting the Dirac equation and using the cyclic properties of the trace
shows that ∂µJµ = m

〈(
k̄e−1

0 + ke0
)
ψ̄ψ

〉
0. Thus the current is conserved whenever k̄ = ηk.

Since k characterizes the nature of the Dirac equation we make the following definition.
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Definition 1. If k ∈ C ⊗ C�(η) satisfies k2 = η and k̄ = ηk then we call k a Dirac character.

The Clifford elements k satisfying k̄ = ηk comprise a real linear subspace of C ⊗ C�(η)

spanned by
√

η, ie0, ek,
√

ηe0k,
√−ηekl , e0kl , ie123 and

√−ηe0123. These basis elements all
square to η and hence are Dirac characters. In the literature there are a number of choices
for k. For Dirac’s original equation η = −1 and k = −i, for Hestenes’ equation [5] k = e012

and for the equation of Joyce [2] k = −ie0.
The physical content of the Dirac field ψ is represented by the quantum numbers for

energy, momentum and angular momentum (including intrinsic spin). The transformations
for translation, rotation and boost are all of the form ψ 
→ Uψ(U−1xU). An infinitesimal
analysis shows that the operators corresponding to the above observables are even Clifford
operators and hence commute with e0123. Thus a transformationψ 
→ e0123ψ changes the sign
of the mass but not the physical content of the Dirac field. More generally, we define a gauge
transformation of the Dirac equation to be any transformation preserving the physical content
of the Dirac field. These transformations direct sum decompose into two subspaces depending
on whether or not they commute with k. Suppose U is an invertible Clifford element. If
[k, U] = 0, then ψ transforms according to the right action

ψ 
→ ψU (6)

and if {k, U} = 0, then ψ transforms according to the pseudo-right action

ψ 
→ e0123ψU. (7)

A companion paper [6] analyses the consequences of determining the full compact gauge
group resulting from these transformations.

Dirac theories invariably restrict the image of the Dirac field ψ to some linear subspace
J of C ⊗ C�(η). This is equivalent to fixing the gauge under the pseudo-right/right gauge
actions. Furthermore, the subspaceJ must be invariant under the Lorentz group. This requires
that uψ ∈ J for all u ∈ C ⊗ C�+(η) and all ψ ∈ J . That is, C ⊗ C�+(η)J = J . We call
such a subspace J a pseudo-left ideal. The even subalgebra C ⊗ C�+(η) of C ⊗ C�(η) is an
example of a pseudo-left ideal that is not a left ideal, as is the odd linear subspace C⊗C�−(η).
Let k ∈ C ⊗ C�(η) be such that k2 = −1 and define Tψ = e0123ψl. We see that T2 = 1
and that 1

2 (1 + T) are orthogonal projection operators. The subspaces C ⊗ C�(η) 1
2 (1 ± T) are

pseudo-left ideals. For l = ±i we get the left acting chirality operators.
Given a Dirac equation with character k there may be no non-trivial solution whose

image lies entirely within a given pseudo-left ideal. If ψ ∈ J is a solution then
ψk = 1

m
∇ψ ∈ C ⊗ C�−(η)J . This is a necessary condition for a non-trivial solution.

Thus we make the following definition.

Definition 2. A pseudo-left ideal J is called a Dirac pseudo-left ideal of Dirac character k if
C ⊗ C�−(η)J = J k.

If J is a left ideal then it is Dirac if and only if J = J k. We are now in a position to define
precisely what we mean by a Dirac formulation.

Definition 3. A Dirac formulation is a pair (k,J ) where k is a Dirac character and J is a
Dirac pseudo-left ideal.

A Dirac formulation defines a current-conserving Dirac equation of character k over a suitable
Lorentz invariant subspace J . We devote the remaining sections to revealing the equivalence
of Dirac formulations.



4732 W P Joyce and J G Martin

We have restricted ourselves to Dirac formulations where ∇ operates from the left. We
could equally well have dealt with Dirac equations of the form ψ∇̃ = mkψ over some
pseudo-right ideal where ∇̃ acts from the right. Equations of this form are called adjoint Dirac
equations. Moreover, reversion takes a Dirac equation ∇ψ = mψk over J to an adjoint Dirac
equation ψ̃∇̃ = mk̃ψ̃ over the pseudo-right ideal J̃ . The action of the Lorentz group on
spacetime is preserved and the Dirac field transforms as ψ 
→ ψŨ. Consequently the energy
and momentum operators remain unaffected and the spin operators act from the right as S̃k.
Importantly, the physical content of the Dirac field remains unchanged and the Dirac current
is conserved.

3. Pseudo-left ideals

In this section we explore the properties of pseudo-left ideals. We begin with the familiar
left ideals. The building blocks of left ideals are the simple (or minimal) left ideals. A
simple left ideal is one that has no proper left sub-ideal. Every subspace C ⊗ C�(η)f for
any f ∈ C ⊗ C�(η) is a left ideal. If f is invertible it is the entire space C ⊗ C�(η). More
importantly we have the following lemma.

Lemma 1. Every left ideal is given by C ⊗ C�(η)f where f ∈ C ⊗ C�(η) is idempotent.

(Recall that f is idempotent if f2 = f.) Following Lounesto [1] let Mat(4, C) denote the
algebra of all 4 × 4 complex matrices. Recall that a matrix representation of C ⊗ C�(η) in
Mat(4, C) is a 4-tuple (γµ) of matrices from Mat(4, C) satisfying {γµ, γν} = 2gµν where
(gµν) = diag{−η, η, η, η}. We prove our proposition by demonstrating that every left ideal
of Mat(4, C) may be written as Mat(4, C)f , where f ∈ Mat(4, C) is idempotent. Suppose J
is a left ideal of Mat(4, C). Fix A ∈ J satisfying rank (A) = maxA′∈J rank (A′). We know
from elementary linear algebra that any m × n matrix A may be factored as A = LIrR. Here
L (respectively R) is a non-singular m × m (respectively n × n) matrix, and the m × n matrix
Ir consists of zeros everywhere except in the first r diagonal positions, where the number of
‘1’ entries is r = rank (A). If J is a left ideal of Mat(n, C) and A ∈ J then R−1IrR ∈ J .
We now change to the representation (γ ′

µ) via the similarity transformation RγµR−1. In this
new representation (R−1IrR)′ = Ir ∈ J ′. Thus J ′ contains all 4 × 4 complex matrices with
the last 4 − r columns containing only zero entries. That is, Mat(4, C)Ir ⊂ J ′. We now show
that all B ∈ J ′ are of this form. Since BIr ∈ J ′ then B(1 − Ir ) ∈ J ′. The entries of the first r
columns of B(1 − Ir) are all zero. We will show that B(1 − Ir ) = 0. If (1 − Ir )B(1 − Ir ) �= 0
then Ir + B(1 − Ir ) ∈ J ′ whose rank exceeds that of A contradicting the choice of A. Hence
(1 − Ir )B(1 − Ir ) = 0. Suppose bij is a nonzero entry of IrB(1 − Ir ) then j > r � i

and a row interchange, Ri,r+1, of the ith and (r + 1)th rows of IrB(1 − Ir ) shifts bij into the
(r + 1)th row, jth column of Ri,r+1IrB(1 − Ir ) ∈ J ′. This contradicts the requirement that
(1 − Ir )Ri,r+1IrB(1 − Ir ) = 0. Thus B(1 − Ir ) = 0 showing J ′ ⊂ Mat(4, C)Ir. That is,
J ′ = Mat(4, C)Ir and the left ideal represented by J in C ⊗ C�(η) is given by C ⊗ C�(η)f
where f = ∑

α∈I uαeα and the uα ∈ C are given by the expansion of Ir in the matrix
representation as

Ir =
∑

α∈I

uαγ ′
α.

The proof of the lemma reveals that a left ideal is simple if and only if its dimension is 4.
Every left ideal is semisimple. A Gram–Schmidt orthogonalization applied to any left ideal
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J gives the direct sum decomposition

J =
r⊕

i=1

C ⊗ C�(η)fi (8)

where each summand is simple and fifj = δij fj . Consequently f = ∑r
i=1 fi is idempotent and

J = C ⊗ C�(η)f with dimJ = 4r . We define the rank of f to be rank f = r .
Given the preceding lemma we can determine the condition that a left ideal is a Dirac left

ideal.

Proposition 1. A left ideal J = C ⊗ C�(η) 1
2 (1 + l) is a Dirac left ideal of character k if and

only if [k, l] 1
2 ∈ J .

The left ideal is a Dirac left ideal of character k if and only if k′(1 + l) = (1 + l)k for some
k′ ∈ C⊗C�(η). We have that (1 + l)k = (k + fk) 1

2 (1 + l)+ (k + lk) 1
2 (1 − l) so the left ideal is a

Dirac ideal of character k if and only if the second term vanishes. This term can be rewritten
as (k(1 + f) − [k, l]) 1

2 (1 − l) and equals zero if and only if [k, l] 1
2 (1 − l) = 0.

The general subspaces of interest are the pseudo-left ideals. This class contains the left
ideals. We define a simple pseudo-left ideal to be one that has no proper left sub-ideal. It is
important to realize that a left ideal cannot be a simple pseudo-left ideal even if it is itself a
simple left ideal. In fact every left ideal J can be decomposed into two pseudo-left ideals
1
2 (1 ± ie0123)J using the chirality projectors. The subspaces C ⊗ C�±(η)f are pseudo-left
ideals for any f ∈ C ⊗ C�(η). A pseudo-left ideal J is called strict if J ∩ (C ⊗ C�−(η)J ) =
{0}. In this case we see that C ⊗ C�−(η)J is also a strict pseudo-left ideal with the same
dimension as J . Moreover, the direct sum J ⊕ (C ⊗ C�−(η)J ) is a left ideal. The dimension
of all strict pseudo-left ideals must be half that of some left ideal. That is, of dimension 8, 6,
4 or 2. Examples for each dimension are C ⊗ C�+(η), C ⊗ C�+(η)

(
1 − 1

4 (1 + ie12)(1 + e03)
)
,

C ⊗ C�+(η) 1
2 (1 + ie12) and C ⊗ C�+(η) 1

4 (1 + ie12)(1 + e03), respectively.
Every pseudo-left ideal can be written as the direct sum of a left ideal and a strict pseudo-

left ideal as attested by the following proposition. Define the right acting gauge transformation
T± by ψT± = 1

2 (ψ ∓ e0123ψe0123). Hence C ⊗ C�(η)T± = C ⊗ C�±(η).

Proposition 2. Every pseudo-left ideal is of the form

C ⊗ C�(η)(f + T+hg) = (C ⊗ C�(η)f) ⊕ (C ⊗ C�+(η)hg) (9)

where f and g are orthogonal idempotents, h is invertible and (hT−)g �= 0 unless g = 0.

Let J be a pseudo-left ideal and J1 a maximal left ideal contained in J . There exists
f idempotent such that J1 = C ⊗ C�(η)f. Let J2 ⊂ J ⊥

1 = C ⊗ C�(η)(1 − f) such that
J = J1 ⊕ J2, then J2 is a strict pseudo-left ideal. Now (C ⊗ C�−(η)J2) ⊕ J2 is a left
ideal given by C ⊗ C�(η)g for some idempotent g orthogonal to f. Moreover, there exists an
invertible h such that hg ∈ J2. Hence C ⊗ C�+(η)hg ⊂ J2. Dimension counting reveals that
dim C ⊗ C�+(η)hg = dimJ2 showing J2 = C ⊗ C�+(η)hg. Finally, if (hT−)g = 0 then there
is u ∈ C ⊗ C�+(η) such that ug = hg. Since u commutes with T+ then it can be absorbed and
we may choose h = 1.

We note that every pseudo-left ideal C ⊗ C�(η)(f + T+hg) of the above proposition is
gauge equivalent to a pseudo-left ideal C⊗C�(η)(f ′ +T+g′) where f ′ = hfh−1 and g′ = hgh−1

are orthogonal idempotents, and the gauge equivalence is ψ 
→ ψh−1. A Gram–Schmidt
orthogonalization shows that every strict pseudo-left ideal J is semisimple. Hence we have
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the semisimple decomposition

J =
r⊕

i=1

C ⊗ C�+(η)hifi (10)

where the hi are invertible and fifj = δij fj .
We have the condition of the following proposition for pseudo-left ideals to be Dirac.

Proposition 3. A pseudo-left ideal C ⊗ C�(η)(f + T+hg) where h is invertible and f and g
are orthogonal idempotents is Dirac of character k if and only if there are u, v ∈ C ⊗ C�(η)

invertible such that v is odd, fk = uf and gk = vg.

We first note that C ⊗ C�(η)(f + T+hg) is Dirac of character k if and only if for all
ψ ∈ C ⊗ C�(η)(f + T+hg) we have that ψf ∈ C ⊗ C�(η)f if and only if ψfk ∈ C ⊗ C�(η)f
and that ψg ∈ C ⊗ C�(η)T+hg if and only if ψgk ∈ C ⊗ C�(η)T−hg. Thus a pseudo-left ideal
is Dirac of character k if and only if its component strict pseudo-left and left ideal components
are Dirac of character k. If C ⊗ C�(η)f is Dirac of character k then from the definition there
is an invertible u ∈ C ⊗ C�(η) such that fk = uf. The converse also holds. If C ⊗ C�(η)T+hg
is Dirac of character k then from the definition there is an invertible v′ ∈ C ⊗ C�−(η) such
that hgk = v′hg. Thus gk = vg where v = h−1v′h ∈ C ⊗ C�−(η) and is invertible. The
converse also holds.

Finally note that the proposition implies the Dirac left ideal condition of proposition 1
since [hg, k] = (vh − kh)g which annihilates with 1 − g, and [f, k] = (u − k)f which
annihilates with 1 − f.

4. Equivalence of Dirac formulations

We begin the section by making explicit exactly what we mean when we say that two Dirac
formulations are equivalent.

Definition 4. Two Dirac formulations (k1,J1) and (k2,J2) are equivalent, written
(k1,J1) ∼= (k2,J2), if there exists a gauge transformation φ : J1 → J2.

The gauge transformation φ is an isomorphism of vector spaces preserving the physical content
mapping Dirac fields of character k1 to Dirac fields of character k2. We begin with the case
when J1 and J2 are both left ideals.

Proposition 4. Two Dirac formulations (k1,J1) and (k2,J2) where J1 and J2 are left ideals
are equivalent if and only if dimJ1 = dimJ2.

We first demonstrate that given a Dirac formulation (k,J ) where J is a left ideal then
(k,J ) ∼= (

√
η,J ). We note that by proposition 1 that J is a Dirac left ideal of character

√
η.

We also note the important identity

k 1
2 (1 ± √

ηk) = ±η
√

η 1
2 (1 ± √

ηk). (11)

Define the transformation T : J → J by

Tψ = ψ 1
2 (1 +

√
ηk) + e0123ψ

1
2 (1 − √

ηk). (12)

This map is invertible with inverse T −1ψ = ψ 1
2 (1 +

√
ηk) − e0123ψ

1
2 (1 − √

ηk). Clearly T
preserves physical content and by identity (11) maps a Dirac field ψ of character k to a Dirac
field Tψ of character η

√
η. Finally, in the case η = −1 apply the transformationψ 
→ e0123ψ,

we obtain the desired equivalence. To complete the proof of the proposition we show that the
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Dirac formulations (
√

η,J1) and (
√

η,J2) are equivalent if and only if dimJ1 = dimJ2. Let
Ji = C ⊗ C�(η)fi where fi are idempotent and i = 1, 2. Embedded in the proof of lemma 1
we demonstrated that there exist invertibles u, v ∈ C ⊗ C�(η) such that f2 = vf1u. We define
T : J1 → J2 by Tψ = ψu then it is easy to check that this is an equivalence.

There are no Dirac formulations (k,J ) where J is a strict pseudo-left ideal and k is even.
This includes the choices k = √

η, showing in particular that Dirac’s original equation over
any strict pseudo-left ideal has only trivial solutions. Nevertheless, every Dirac formulation
over a strict pseudo-left ideal of dimension 4 or 8 is equivalent to a Dirac formulation over a
left ideal, as we now demonstrate.

Proposition 5. Given a Dirac formulation (k, C ⊗ C�+(η)hg) over a strict pseudo-left ideal
with rank g of 2 or 4, then there is an equivalent Dirac formulation (k′, C ⊗ C�(η)f).

We have that (k, C ⊗ C�+(η)hg) ∼= (hkh−1, C ⊗ C�+g′) where g′ = hgh−1 is idempotent
under the gauge equivalence ψ 
→ ψh−1. Thus without loss of generality we assume that
h = 1. Define f = g 1

2 (1 +
√

ηk). There exists v ∈ C ⊗ C�−(η) invertible such that gk = vg.
Then f = 1

2 (1 +
√

ηv)g and is idempotent. We have that C ⊗ C�(η)f ⊂ C ⊗ C�(η)g where
either rank f = rank g or rank f = 1

2 rank g. The former case gives f = g = 1
2 (1 +

√
ηk′)

for some k′ squaring to η. Since vf = η
√

ηf then C ⊗ C�+(η)f = C ⊗ C�(η)f which
is a left ideal contrary to the hypothesis of the proposition. Hence rank f = 1

2 rank g and
C ⊗ C�(η)g = C ⊗ C�+(η)g ⊕ C ⊗ C�−(η)g. We define the canonical projection operators
P± : C ⊗ C�(η)g → C ⊗ C�±(η)g. These satisfy uP± = P±u for all u ∈ C ⊗ C�+. We have
(k, C ⊗ C�+(η)g) ∼= (k, C ⊗ C�(η)f) under the gauge equivalenceψ 
→ ψ 1

2 (1 +
√

ηk), whose
inverse is ψ 
→ P+ψ.

5. Real Dirac formulations

The first formulation of a real Dirac theory was that of Hestenes [5, 7]. The extraction of
observables is more delicate with real Dirac formulations. This is because no element of
C�(η) both squares to −1 and commutes with every other element. Hestenes’ way around
this problem is to extract the quantum numbers from the Dirac current. Alternatively, the unit
imaginary i may be identified with e0123 giving the spin operators as Sk = 1

2 e0k . Whatever the
interpretation is we carry the definitions directly over from the complex situation to the real
situation. This gives us the following proposition.

Proposition 6. If η = −1 then every real Dirac formulation (k,J ) with dimJ = 8 or 16 is
equivalent to every (complex) Dirac formulation of dimension 1

2 dimJ .

The real Dirac formulation is equivalent to (k, C ⊗ J 1
2 (1 + ik)) under the gauge equivalence

ψ 
→ ψ 1
2 (1 + ik) with inverse ψ 
→ �ψ. This follows from k 1

2 (1 + ik) = −i 1
2 (1 + ik).

The above proposition provides the link to Hestenes’ equation via an SU(2) gauge-fixed
Joyce equation. Lounesto [1] gives a matrix representation for (−i, C ⊗ C�(1, 3) 1

2 (1 + ie0)
1
2 (1 + ie12)) that demonstrates its equivalence to the Lounesto formulation. The Lounesto
formulation is equivalent to (−ie0, C ⊗ C�+(1, 3) 1

2 (1 + ie12)), the Dirac equation in Joyce
[2] with the SU(2) gauge fixed. The gauge equivalence is given by the map ψ 
→ 2ψT+

with inverse ψ 
→ ψ 1
2 (1 + e0). This in turn is equivalent to Hestenes’ real Dirac formulation

(e012, C�+(1, 3)) under the gauge equivalenceψ 
→ 2�ψ with inverse ψ 
→ ψ 1
2 (1 + ie12).



4736 W P Joyce and J G Martin

6. Conclusion

We have shown that there are many ways to formulate non-trivial Dirac theories. Such theories
are distinguished only by the dimension of their Dirac pseudo-left ideal. This applies to the
real Dirac formulations, including that due to Hestenes. In particular we have demonstrated
the equivalence of the Lounesto (Dirac’s original), gauge-fixed Joyce and Hestenes’ Dirac
formulations:
(−i, C ⊗ C�(1, 3) 1

2 (1 + e0)
1
2 (1 + ie12)

)∼= (−ie0, C ⊗ C�+(1, 3) 1
2 (1 + ie12)

)

∼= (e012, C�+(1, 3)). (13)
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